February 7, 2020
Town Hall Meeting
Magnolia Springs Community Association, Community Hall, Magnolia Springs, AL
4:00 P.M.

1. Call to Order:
Mayor, Kim Koniar, called, Town Hall Meeting to order at 4:00 p.m.

2. Introduction:
Mayor, Kim Koniar, introduced, Scott Sligh, Riviera Utilities, Chief Engineer to discuss the "Magnolia Springs Proposed Underground Conversion" with the Town of Magnolia Springs residents.

Scott Sligh, introduced, Team Members:
- James Wallace, Operations Manager
- Beau Brodbeck, Alabama Cooperative Extension
- Josh Roberts, Vegetation Management Supervisor
- Brian Huskey, Engineering Tech
- Jason Gross, Fiber Tech Industries

3. Presentation:
Scott Sligh, presented, the "Magnolia Springs Proposed Underground Conversion". He discussed the pros and cons along with installation methods. Presentation included with minutes.

4. Summary
Mayor, Kim Koniar, thanked, Riviera Utilities for presentation. Council will further review and discuss with Tree & Streetscape Committee.

5. Adjourn
Mayor, Kim Koniar, thanked everyone for coming to the Town Hall Meeting. Mayor Koniar, adjourned, Town Meeting at 5:28 p.m.

Approved this 24th day of March 2020

Kim Koniar, Mayor

ATTEST:

Jenny Opal White, Town Clerk/Treasurer
Magnolia Springs Proposed Underground Conversion

Overhead

Pros:
- Inexpensive
- Small footprint
- Generally quick to repair
- Easy to add on to (lights, services, etc.)
- Can support multiple utilities
- Does not require a lot of excavation

Cons:
- Routine trimming required
- Subject to harsh weather impacts
- Aesthetics of poles and wires
- Difficult to replace poles in tree canopies

Underground

Pros:
- Improved aesthetics
- Storm resilient
- Not subject to routine tree trimming

Cons:
- More expensive
- Not as easy to add on to
- Longer outage times
- Requires more excavation
- Larger footprint than a pole
Underground Installation Methods

Open Trench

Directional boring

Cross Hatch View

Directional Drilling tunnels cleanly under obstacles
This is a transformer in Fairhope in my subdivision. This was dug in with a backhoe and was not done with directional boring.
This is a transformer and was installed about 7 months ago. Note the gross that was replaced and is healthy. The transformer pad is 42" x 42" and sits on the ground.
This is a transformer and was also installed about 7 months ago. Minimal disturbance to the small flower bed adjacent to and behind it.
This is a secondary (low voltage) pedestal. Note the proximity to an existing tree.
This transformer was installed about two months ago. It was tucked back into the trees somewhat at the request of the customer.
This is a typical bore pit. It is approximately 3' long and 1' wide. The smaller hole at the bottom of the picture was dug with post hole diggers to verify the location and depth of existing utilities prior to excavation.
During the work to be done, you may observe conduit sticking out of the ground, similar to what is shown here. (This was dug with a trackhoe and not done with directional boring, hence the amount of bare dirt that can be seen.)
We will install things like this where the conduit is sticking out, and will then pull wire in the pipes. The object on the right is a transformer, as shown in earlier slides. The object on the left is a junction box. It is similar in size to a transformer, but is a little wider. A junction box does not sit on the ground, but has a built-in sleeve that gets buried.
Years Later: